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Latent symmetry of a component of a composite object is de®ned as that

symmetry of a subunit of the component which is not a symmetry of the

component but which is a symmetry of the composite. This is illustrated by a

geometrical example. A group theoretical procedure is given to determine latent

symmetry and is applied to examples.

1. Introduction

Consider the following two-component composite object. The

®rst component is shown in Fig. 1(a): it is a two-dimensional

isosceles triangle with an arbitrary apex angle � < 90�. In the

coordinate system shown, the symmetry of this triangle is the

point group mx. The second component is shown in Fig. 1(b),

a second two-dimensional isosceles triangle obtained by

re¯ecting the ®rst component across the x axis, i.e. by applying

the operation my to the ®rst component. Fig. 1(c) shows the

composite object. The symmetry group of this rhombus-

shaped composite is the point group 2zmxmy.

Consider now the same two-component composite object in

the special case where the apex angle � = 90�. The components

are shown in Figs. 2(a) and 2(b), and the resulting square

composite object in Fig. 2(c). The point group of this second

composite is 4zmxmxy.

The 2zmxmy symmetry of both composite objects can be

understood and predicted by considering the symmetry of the

components and the operation used in the construction of the

composites: in both cases, mx is a common symmetry of the

components, my permutes the components, and 2z is the

product of these two symmetries. The additional symmetry of

the square second composite cannot, however, be understood

or predicted from the common symmetry of the components

and the symmetries which permute the components. In this

paper, we shall show that a partial symmetry (Weinstein, 1996;

Lawson, 1998) of a component can be that additional

symmetry of the composite. In particular, we consider

symmetry-related subunits of a component, i.e. subunits

related by the symmetry of the component. We ®nd that such

subunits can contain symmetries which are not symmetries of

the component but which are symmetries of the composite. It

is this type of partial symmetry of a component that has been

termed latent symmetry by Wadhawan (2000).

In x2, we provide a mathematical model of a composite

object and introduce a group theoretical procedure to deter-

mine which partial symmetries, i.e. symmetries of symmetry-

related subunits of components, are latent symmetries. This

procedure is then applied to two examples. A third example is

given to exemplify the limitations of this procedure in deter-

mining the symmetry of the composite. In x3, the concept of

symmetrizers in the Curie±Shubnikov principle of super-

position of symmetries is related to that of latent symmetry.

We discuss possible physical applications of latent symmetries

in x4.

2. Latent symmetry

We consider a ®nite object A with intrinsic symmetry H. This

®nite object A is the basic component of a composite S, an

unordered set of objects constructed by applying a set

{g1, g2, . . . , gn}, where g1 = 1, of isometries to A,

S � fg1A; g2A; . . . ; gnAg: �1�
We shall consider three contributions to the symmetry of the

composite S.

(i) The subset {g1, . . . , gs} of isometries of the set {g1, g2, . . . ,

gn} which leave the composite S invariant,

gS � fgg1A; gg2A; . . . ; ggnAg � fg1A; g2A; . . . ; gnAg � S:

�2�
This subset {g1, . . . , gs} of isometries are those operations used

in the construction of the composite from the component A

which permute the components of the composite. If the set of

isometries {g1, g2, . . . , gn} used to construct the composite

constitutes a group G, then all elements of G leave the

composite invariant.

(ii) The subgroup Hs of all elements of H which leave the

composite invariant: in Appendix A we de®ne an element h of

H as belonging to the normalizer of {g1, g2, . . . , gn} modulo H

if

hfg1; g2; . . . ; gnghÿ1 � fg1h1; g2h2; . . . ; gnhng; �3�
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where hi , i = 1, 2, . . . , n, are not necessarily distinct elements of

H. It is shown in Appendix B that all elements of H belonging

to the normalizer of {g1, g2, . . . , gn} modulo H constitute

the subgroup Hs of all elements H which leaves the composite

S = {g1A, g2A, . . . , gnA} invariant. An invariance group of the

composite S, owing to the above two types of symmetries, will

be denoted by Inv(1) where

Inv�1� � fg1; . . . ; gsg;Hs


 � �4�

is the group generated by the set of isometries used in the

construction of the composite which permute the components

of the composite and the subgroup Hs of all elements of H

which leave the composite invariant. For both the composite

examples in Figs. 1 and 2, {g1, . . . , gs} = {1, my} = my, Hs = H =

{1, mx} = mx, and Inv(1) = hmy, mxi = 2zmxmy.

(iii) Latent symmetry, the symmetries of symmetry-related

subunits of the basic component which leave the composite

invariant: since the symmetry group of the basic component A

is H, there exists a subunit B and a set of symmetry-related

subunits of A such that

A � fh1B; h2B; . . . ; hmBg; �5�
where hi , i = 1, 2, . . . , m, are the elements of the group H, and

h1 = 1, the identity element of H. We denote by K the

symmetry group of the subunit B. It is shown in Appendix C

that the composite

S � fg1A; g2A; . . . ; gnAg � f. . . ; gihjB; . . .g; �6�
where i = 1, 2, . . . , n; j = 1, 2, . . . , m, is invariant under the

subgroup Ks of K of elements which are in the normalizer of

the set {. . . , gihj, . . .}, i = 1, 2, . . . , n and j = 1, 2, . . . , m, modulo

K. An invariance group of the composite S is then the group

Inv�2�,
Inv�2� � Inv�1�;Ks


 �
; �7�

the group generated by the elements of the groups Inv(1) and

Ks.

For both the composite examples in Figs. 1 and 2, one can

write A = {B, mxB} and S = {B, 2zB, mxB, myB}, where the

respective subunits B can be seen in Figs. 1(d) and 2(d). For

the composite in Fig. 1, with the arbitrary apex angle, the

subunit B has a symmetry group K consisting only of the

identity element. Consequently, Inv(2) = Inv(1) = 2zmxmy. For

the composite in Fig. 2, with a 90� apex angle, the symmetry

group of the subunit B is the group K = mxy. Ks = K since the

operation mxy is in the normalizer of {1, 2z, mx, my} modulo K.

Consequently, we have derived as an invariance group of this

composite the group Inv(2),

Inv�2� � 2zmxmy;mxy


 � � 4zmxmxy: �8�
We have shown that the additional symmetries of the

composite in Fig. 2, additional to the symmetries of the point

group 2zmxmy, are related to the symmetry mxy of a subunit of

the basic component which is a symmetry of the composite. It

is this additional (latent) symmetry of a subunit of the basic

component which generates this additional symmetry of the

composite.

Figure 1
Construction of a rhombus-shaped composite. A planar isosceles
triangular basic component A with an apex angle � < 90� is shown in
(a). A second component my A is shown in (b) and the rhombohedral
composite in (c). The subunit B of the basic component A is shown in (d).

Figure 2
Construction of a square composite. A planar isosceles triangular basic
component A with an apex angle � = 90� is shown in (a). A second
component my A is shown in (b) and the square composite in (c). The
subunit B of the basic component A is shown in (d).



For the example composite in Fig. 1, the subunit B has only

the trivial identity symmetry in its symmetry group. The

symmetry group K of the subunit B does not then imply that

the subunit B can be subdivided into smaller subunits.

Consequently, in this case, the process of searching for addi-

tional latent symmetry in the subunits of the basic component

is ®nished. This is not the case, however, in the square

composite in Fig. 2.

If the symmetry group K of the subunit B is of order greater

than unity, there exists a smaller subunit C and a set of

symmetry-related subunits of B such that

B � fk1C; k2C; . . . ; kpCg; �9�
where kq, q = 1, 2, . . . , p, are the elements of the group K and

k1 = 1, the identity element of K. We denote by L the

symmetry group of the subunit C. The composite S,

S � f. . . ; gihjB; . . .g; �10�
where i = 1, 2, . . . , n; j = 1, 2, . . . , m, can now be written as

S � f. . . ; gihjkqC; . . .g; �11�
where i = 1, 2, . . . , n; j = 1, 2, . . . , m; q = 1, 2, . . . , p, and the

composite S is invariant under the subgroup Ls of L of all

elements which are in the normalizer of the set {. . . , gihjkq,

. . .}; i = 1, 2, . . . , n; j = 1, 2, . . . , m; q = 1, 2, . . . , p, modulo L. An

invariance group of the composite S is then the group Inv(3),

Inv�3� � Inv�2�;Ls


 �
; �12�

the group generated by the elements of the groups Inv(2) and

Ls.

If the subunit C has a symmetry group L consisting only of

the identity element, then Inv(3) = Inv(2) and the process of

search for additional latent symmetry is ®nished. If the

symmetry group L of the subunit C is of order greater than

unity, then the process of de®ning a smaller subunit and a new

invariance group Inv is repeated. This process continues until

the symmetry group of the subunit consists only of the identity

element.

We illustrate this continuing process by again considering

the composite in Fig. 2. The symmetry group of the subunit B

shown in Fig. 2(d) is mxy. Consequently, one can de®ne a

subunit C such that B = {C, mxyC }, see Fig. 3(a). The symmetry

group L of the subunit C consists of the identity and a mirror

line perpendicular to the x axis and passing through the apex

of the isosceles triangular subunit C. This mirror symmetry is

not contained in the normalizer of the set of isometries which

generate the composite from the subunit C modulo L. We

have then not found any new symmetries of the composite.

Since the subunit C has a symmetry group of order greater

than unity, we can repeat the above process, i.e. C can be

subdivided into smaller subunits. One of these smaller sub-

units, denoted by D, is shown in Fig. 3(b). Its symmetry group

N consists of the identity and a mirror line perpendicular to

the xy direction and passing through the apex of the isosceles

triangular subunit D. This mirror symmetry is not contained in

the normalizer of the set of isometries which generate the

composite from the subunit D modulo N. Again, we have not

found any new symmetries of the composite.

The subunit D has a symmetry group of order greater than

unity and we could repeat the process and subdivided D. In

principle, as in this case, this process is repeated ad in®nitum,

as at no repetition of the process of ®nding smaller subunits do

we ®nd a subunit whose symmetry group consists only of the

identity element. For ®nite composites, however, as in this

case, the symmetry group of the composite is a point group

and there exists a singular point, line or plane left invariant by

this point group. For ®nite composites, we can apply the

following ansatz: only those isometries which leave invariant

the singular point, line or plane of the composite object can be

symmetry elements of that composite. For the ®nite composite

of Fig. 2, we have already found that the composite is invariant

under the point group 4zmxmxy and a singular point, the origin

of the coordinate system, is de®ned. As the mirror line

symmetry of subunits C and D do not pass through this

singular point, they cannot be symmetries of the composite. In

fact, in this case, no further subdivision into smaller subunits

will give rise to a subunit whose symmetry group contains an

isometry, except for the identity, which leaves the singular

point of the composite invariant. Consequently, a continuation

of this process will not reveal any new symmetries of the

composite.

As a second example, consider the composite shown in

Fig. 4(a). The basic component A is a right triangle with one

leg of length 1 and the second of length � < 1. The point group

H of the component A consists only of the identity, H =

{(1| 0, 0)}, where we have given the identity in two-dimensional

Seitz notation, which we use in the symmetry analysis below.

The composite S = {g1A, g2A, . . . , g4A} is generated by the set

of isometries {g1, g2, . . . , g4} = {(1| 0, 0), (my| 0, 0), (mxy| 0, 0),

(4z| 0, 0)}. The subset of elements of {g1, g2, . . . , g4} which leave

the composite invariant is the subset {(1| 0, 0), (my| 0, 0)}, and

since the group H consists only of the identity element, Hs =

H, and, from equation (4), Inv(1) = {(1| 0, 0), (my| 0, 0)} = my.

Since the point group H of the component A is the identity

point group, one cannot subdivide the component A into

symmetry-related subunits, and consequently the above

search for latent symmetry is concluded.
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Figure 3
An enlarged view of the subunit B of the basic component A of the
square composite, see Fig. 2(d), showing it subdivided into subunits in (a).
The subunit C of (a) is further subdivided into smaller subunits in (b).
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In Fig. 4(b), we show this composite when � = 1, and the

component A is now an isosceles triangle. The point group H

of the component A is {(1| 0, 0), �m�xyj1;ÿ1�}, where the

translations associated with the mirror plane are due to the

fact that the mirror plane does not pass through the origin of

the given coordinate system. As the composite in Fig.4(a), the

®rst invariance group of this composite, equation (4), is again

Inv(1) = {(1| 0, 0), (my| 0, 0)}.

Since the symmetry group of the component A consists of

more than one element, there exists a subunit B and a

symmetry-related subunit of A, see Fig. 4(c), such that, see

equation (5),

A � f�1j0; 0�B; �m�xyj1;ÿ1�Bg: �13�
The symmetry group of the subunit B is K = {(1| 0, 0),

(mx| 1, 0)}. The composite S can then be written in terms of this

subunit B,

S � f. . . gihjB . . .g
� f�1j0; 0�B; �myj0; 0�B; �mxyj0; 0�B; �4zj0; 0�B;
�m�xyj1;ÿ1�B; �43

zj1; 1�B; �2zj1;ÿ1�B; �mxj1; 1�Bg: �14�
The element (mx| 1, 0) of the point group K of B is in the

normalizer of {. . . gihj . . .} modulo K, and it follows that Ks =

{(1| 0, 0), (mx| 1, 0)} and the second invariance group, equation

(7), is

Inv�2� � hInv�1�;Ksi
� f�1j0; 0�; �myj0; 0�; �mxj1; 0�; �2zj1; 0�g: �15�

This is the point group 2zmxmy(1=2, 0), the point group 2zmxmy

whose singular point is, in the coordinate system used in Fig. 4,

at the coordinates (1=2, 0).

The subunit B can be subdivided into symmetry-related

subunits and these subunits further subdivided into smaller

subunits. No new latent symmetries of the composite,

however, are found among the symmetries of these subunits or

smaller subunits, as none leave invariant the singular point at

(1=2, 0).

In this paper, we have shown that, in addition to common

symmetries of the components of a composite and symmetries

which permute the components, additional symmetries of the

composite may be found among the symmetries of symmetry-

related subunits of the components. We have also given a

systematic method to determine such additional symmetries. It

should not be construed, however, that one can determine all

additional symmetries of the composite using this metho-

dology. The reason for this is that the methodology presented

searches for additional symmetry among the symmetries of

individual symmetry-related subunits of a single component.

Additional composite symmetries may be related to the

symmetries of combinations of subunits of different compo-

nents.

For example, Fig. 5 shows a composite constructed from a

isosceles triangular prism denoted by A and a set of isometries

{g1, g2, . . . , g8} which constitute the group 4zmxmxy. In Fig. 5(a),

� < 1 and we have a rectangular solid; in Fig. 5(b), �= 1 and we

have a cubic solid. The symmetry of the composite in Fig. 5(a)

can be determined using the method given above, the cubic

symmetry of the composite in Fig. 5(b) cannot. The reason for

this is shown in Fig. 5(b). Additional cubic symmetry of the

composite is not related to the symmetry of a symmetry-

related subunit of A, but can be related to a combination of

subunits of different components. To demonstrate this, in

Fig. 5(b) we have shaded four subunits belonging to two

components which show cubic symmetry.

3. Latent symmetry and the Curie±Shubnikov principle

According to the Curie principle of superposition of dissym-

metries (see, for example, Shubnikov & Koptsik, 1974;

Brandmuller, 1986; Wadhawan, 2000), when several

phenomena of different origin are superimposed in one and

the same system, their dissymmetries are summed. Let G1,

G2, . . . denote the symmetry groups of the individual

Figure 4
Composite formed from a basic component A and {g1, g2, g3, g4} =
{1, my, mxy, 4z} when (a) � < 1 and (b) � = 1. The subunit B of A is shown
in (c).



phenomena taken separately. The superimposed composite

system is invariant under the group

Gd � G1 \G2 \ . . . � \iGi: �16�
This is the process of dissymmetrization or lowering of

symmetry (Shubnikov & Koptsik, 1974).

In certain situations, the symmetry group Gs of the super-

imposed composite system is higher than Gd, i.e. Gs contains

the group Gd as a subgroup. It is then said that a process of

symmetrization or symmetry enhancement has occurred. The

symmetry group Gs of the superimposed composite system is

written in terms of its subgroup Gd as

Gs � Gd [ g2Gd [ . . . [ gjGd: �17�
These additional symmetries g2, g3, . . . , gj of the composite are

called symmetrizers (Shubnikov & Koptsik, 1974). The con-

cept of latent symmetry can be used to determine such

symmetrizers without prior knowledge of the symmetry group

of the composite.

Consider the square composite in Fig. 2. The symmetry

groups of the two components are identical, G1 = G2 = mx, and

consequently Gd = mx. The symmetry group of this composite

is Gs = 4zmxmxy, Gs can be written as

Gs � Gd [ 2zGd [myGd [mxyGd; �18�

with symmetrizers 2z, my and mxy. Note that these symme-

trizers were determined after the symmetry group of the

composite was given.

As we have shown in the preceding section, the symmetry

group of this composite, and consequently the above

symmetrizers, can be determined in a systematic manner

without any prior knowledge as to what is the symmetry group

of the composite. It is with the latent symmetry of a subunit of

the basic component of the composite with which one can

predict such symmetrizers.

4. Applications

This concept of latent symmetry is applicable in at least two

important ®elds, namely in the ®eld of the symmetry of

composite systems and in the ®eld of phase transitions. With

respect to the former, there is much literature dealing with the

symmetry of bicrystals with a homophase interface, relevant

also to twinning, grain boundaries and domain structures [see

Vlachavas (1984), and references therein, and Wadhawan

(2000)]. Not taking into account the possibilities of latent

symmetry can lead to erroneous conclusions. As pointed out

by Wadhawan (1987), a theorem proved by Vlachavas (1984)

is not correct. According to the theorem, the order of the

composite symmetry group can at most be twice the order of

the symmetry groups of the components. The square compo-

site discussed above is a counterexample to that theorem: the

order of the composite symmetry 4mm is four times that of the

order of the component symmetry m.

In the extended Landau theory of phase transitions, infor-

mation about the crystal structure is introduced through the

tensor ®eld criterion (Birman, 1966; Litvin, 1982; Litvin et al.,

1982): the active irreducible representation responsible for a

phase transition from the original (prototype) crystal structure

of symmetry S0 to the structure of the daughter phase must be

contained in a tensor ®eld representation of S0. The latter, by

de®nition, is a direct product of a tensor representation of S0

and a permutation representation of the atoms of the crystal.

The atomic structure changes with temperature and other

control parameters. It is conceivable that for a certain set of

control parameters the interatomic bond angles may acquire

special values, leading to the manifestation of latent symmetry,

and the concomitant `symmetry jumps' in a sequence of phase

transitions.

APPENDIX A

Consider a group M and an unordered subset of elements

{g1, g2, . . . , gn} of M. The set of all elements m of the group M

which map by conjugation the unordered set {g1, g2, . . . , gn}

onto itself, i.e.
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Figure 5
Composite formed from an isosceles triangular prism basic component A
and isometries {g1, g2, . . . , g8} which constitute the group 4zmxmxy when
(a) � < 1 and (b) � = 1. Shaded in (b) is a combination of four subunits of
two different components which shows cubic symmetry.
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mfg1; g2; . . . ; gngmÿ1 � fmg1mÿ1;mg2mÿ1; . . . ;mgnmÿ1g
� fg1; g2; . . . ; gng; �19�

constitute a subgroup of M called the normalizer of the subset

{g1, g2, . . . , gn} in M (Kurosh, 1960).

Consider a subgroup H = {h1, h2, . . . } of M. One can inquire

as to what elements of the group M satisfy the following

condition,

mfg1; g2; . . . ; gngmÿ1 � fmg1mÿ1;mg2mÿ1; . . . ;mgnmÿ1g
� fg1h1; g2h2; . . . ; gnhng: �20�

That is, each element m maps the unordered subset

{g1, g2, . . . , gn} not necessarily onto itself, but onto a set where

each element of the set {g1, g2, . . . , gn} is multiplied on the

right by a not necessarily distinct element of H. The subset of

elements of M which satisfy (20) is at least as large as the

normalizer of the subset {g1, g2, . . . , gn} and in general does

not constitute a group. The subset of all elements h of H,

however, which satisfy (20), that is which satisfy the condition

hfg1; g2; . . . ; gnghÿ1 � fhg1hÿ1; hg2hÿ1; . . . ; hgnhÿ1g
� fg1h1; g2h2; . . . ; gnhng; �21�

do constitute a group. We ®rst show that the subset of all

elements of H which satisfy (21) is closed and then that the

inverse of each element in the subset is also contained in the

subset. If h and h0 satisfy (21), then it follows that

hh0fg1; g2; . . . ; gngh0ÿ1hÿ1

� hfh0g1h0ÿ1; h0g2h0ÿ1; . . . ; h0gnh0ÿ1ghÿ1

� hfg1h01; g2h02; . . . ; gnh0nghÿ1

� fhg1h01hÿ1; hg2h02hÿ1; . . . ; hgnh0nhÿ1g
� fhg1hÿ1hh01hÿ1; hg2hÿ1hh02hÿ1; . . . ; hgnhÿ1hh0nhÿ1g:

�22�

Writing hgi h
ÿ1 = gjhj , then hgi h

ÿ1hh0ih
ÿ1 = gj hj hh0ih

ÿ1 = gjhj
00

and

hh0fg1; g2; . . . ; gngh0ÿ1hÿ1 � fg1h001; g2h002; . . . ; gnh00ng: �23�
Consequently, if h and h0 satisfy (21) we have that the product

hh0 also satis®es this equation and the subset of all elements of

H which satisfy (21) is closed under group multiplication.

If an element h of H satis®es (21), it permutes the set

{g1, g2, . . . , gn} by conjugation, i.e. gi is permuted into gj

modulo an element of H via

hgih
ÿ1 � gjhj: �24�

This can be rewritten as

gj � hgih
ÿ1hÿ1

j �25�
and

hÿ1gjh � gih
ÿ1hÿ1

j h: �26�
Since h, hÿ1 and hÿ1

j are all elements of H, we may write

hÿ1hj
ÿ1h = hi and

hÿ1gjh � gihi: �27�

That is, the inverse element hÿ1 permutes the set

{g1, g2, . . . , gn} by conjugation modulo an element of H, the

inverse permutation of that engendered by the element h.

Consequently, if h satis®es (21), it follows from (27) that hÿ1,

the inverse of h, also satis®es this equation,

hÿ1fg1; g2; . . . ; gngh � fhÿ1g1h; hÿ1g2h; . . . ; hÿ1gnhg
� fg1h1; g2h2; . . . ; gnhng: �28�

Since the subset of all elements of H which satis®es (21) is

closed under group multiplication and the inverse of each

element of the subset is also in the subset, the subset is a

subgroup of H.

In this paper we are interested in such subgroups of a group

H which satisfy (21) for a given subset of elements

{g1, g2, . . . , gn} of a group M. This is because of the theorem

proven in Appendix B and its corollary given in Appendix C

which are central in determining the latent symmetry of a

subunit of a component of a composite. We shall say that all

elements h of H which satisfy (21) are contained in the

normalizer of the set {g1, g2, . . . , gn } in M modulo H. In general

we shall not explicitly refer to the group M and use the shorter

phrase in the normalizer of {g1, g2, . . . , gn } modulo H, and

when the subset {g1, g2, . . . , gn} constitutes a group G, use the

phrase in the normalizer of G modulo H.

For example, consider the two groups H = 2x2y2z and G =

3xyz (here we can take M as the group of all rotations about a

point). Calculating hghÿ1 for all g and h (note that hÿ1 = h for

all h),

1G1 � 1 3xyz 32
xyz

2xG2x � 1 3�xyz 32
�xyz � 1 32

xyz2z 3xyz2y

2yG2y � 1 3x�yz 32
x�yz � 1 32

xyz2x 3xyz2z

2zG2z � 1 3xy�z 32
xy�z � 1 32

xyz2y 3xyz2x:

We have that only the unit element h = 1 of H is in the

normalizer of G, i.e. satis®es (19). All elements of H, however,

are in the normalizer of G modulo H, i.e. satisfy (21).

APPENDIX B

Given an object A of symmetry H and a set of isometries

{g1, g2, . . . , gn}. We construct an unordered set S of objects by

applying each of the isometries of {g1, g2, . . . , gn} to the object

A,

S � fg1A; g2A; . . . ; gnAg: �29�
We prove here the following theorem:

Theorem 1 : The unordered set S = {g1A, g2A, . . . , gnA} is

invariant under an element h of H, the symmetry group of the

object A, if and only if h is contained in the normalizer of

{g1, g2, . . . , gn} modulo H. All such elements of H constitute a

subgroup Hs of H.

For the suf®ciency of this theorem, we assume that an

element h of H is contained in the normalizer of {g1, g2, . . . , gn}

modulo H, see Appendix A, and show that h leaves S invari-

ant. Applying h to S we have



hS � hfg1A; g2A; . . . ; gnAg � fhg1A; hg2A; . . . ; hgnAg: �30�
Since h is contained in the normalizer of {g1, g2, . . . , gn}

modulo H, for i = 1, 2, . . . , n, hgi h
ÿ1 = gjhj . Therefore, hgi =

gj hjh = gj hj
0 and we can write

hS � fg1h01A; g2h02A; . . . ; gnh0nAg
� fg1A; g2A; . . . ; gnAg; �31�

where we have used the fact that A is invariant under elements

of H. Consequently, hS = S and h leaves the set S invariant.

For the necessity of this theorem, we assume that an

element h of H leaves the set S invariant and show that it must

be contained in the normalizer of {g1, g2, . . . , gn} modulo H.

Writing the equation hS = S explicitly, we have

fhg1A; hg2A; . . . ; hgnAg � fg1A; g2A; . . . ; gnAg: �32�
The members giA of the set S are permuted by h. For i =

1, 2, . . . , n, the i th member of S is permuted by h into the j(i)th

member, that is

hgiA � gj�i�A �33�
and

gÿ1
j�i�hgiA � A: �34�

We introduce an identity operator hÿ1h,

gÿ1
j�i�hgi�hÿ1h�A � A: �35�

Since hA = A, this becomes

gÿ1
j�i�hgih

ÿ1A � A; �36�
and since the symmetry group of the object A is H, it follows

that gÿ1
j�i�hgih

ÿ1 is an element h of H, an element which we

denote by hj,

gÿ1
j�i�hgih

ÿ1 � hj; �37�
and consequently for i = 1, 2, . . . , n,

hgih
ÿ1 � gj�i�hj: �38�

Thus an element h of H which leaves the set S invariant

belongs to the normalizer of {g1, g2, . . . , gn} modulo H. That all

elements of H which are in the normalizer of {g1, g2, . . . , gn}

modulo H constitute a subgroup Hs of H was proven in

Appendix A. QED

If H is the symmetry group of A, then the symmetry group

of the component giA of S is the group giHgi
ÿ1. We note that

all symmetry operations common to the symmetry groups of

all the components are contained in the subgroup of elements

of H in the normalizer of {g1, g2, . . . , gn} modulo H. Let h

denote an element common to the symmetry groups of all the

components of S. We have

hfg1; g2; . . . ; gnghÿ1 � fhg1hÿ1; hg2hÿ1; . . . ; hgnhÿ1g �39�
and since, for each i = 1, 2, . . . , n, h = gihigi

ÿ1, we have hgih
ÿ1 =

gihig
ÿ1
i gih

ÿ1 = gihih
ÿ1 = gihi

0, it follows that

hfg1; g2; . . . ; gnghÿ1 � fg1h01; g2h02; . . . ; gnh0ng �40�

and all symmetry operations common to the symmetry groups

of all the components are contained in the subgroup of

elements of H in the normalizer of {g1, g2, . . . , gn} modulo H.

As an example, consider the case where H = 4z2x2xy and the

set {g1, g2, . . . , gn} consisting of the elements of the group G =

3xyz. The symmetry groups of the components of the compo-

site S are, respectively, 4z2x2xy, 4x2y2yz and 4y2z2zx. The

symmetry common to these groups is 2x2y2z. This group is

contained in the group of all elements of H which are in the

normalizer of G modulo H, which in this case is the group H =

4z2x2xy itself.

APPENDIX C

If an object A has symmetry H = {h1, h2, . . . , hm}, it follows that

one can identify a subunit B in A such that A =

{h1B, h2B, . . . , hmB}. Let K denote the symmetry group of B.

The set S = {g1A, g2A, . . . , gnA} de®ned in Appendix B can

now, by substituting A = {h1B, h2B, . . . , hmB}, be written as

S � f. . . ; gihjB; . . .g; �41�

where i = 1, 2, . . . , n and j = 1, 2, . . . , m. We have then that the

set S can be considered as a set of objects obtained by applying

all elements of the set {. . . , gihj, . . .}, i = 1, 2, . . . , n and j =

1, 2, . . . , m, to the object B whose symmetry group is K. We

have, as a corollary of the theorem in Appendix B, that the

unordered set S = {. . . , gi hjB, . . .}, i = 1, 2, . . . , n and j =

1, 2, . . . , m, is invariant under an element k of K, the symmetry

group of the object B, if and only if k is in the normalizer of the

set {. . . , gi hj , . . .}, i = 1, 2, . . . , n and j = 1, 2, . . . , m, modulo K.

All such elements of K constitute a subgroup Ks of K.
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